This paper describes the methodology used by the team RedSea in the data competition organized for EVA 2021 conference. We develop a novel two-part model to jointly describe the wildfire count data and burnt area data provided by the competition organizers with covariates. Our proposed methodology relies on the integrated nested Laplace approximation combined with the stochastic partial differential equation (INLA-SPDE) approach. In the first part, a binary non-stationary spatio-temporal model is used to describe the underlying process that determines whether or not there is wildfire at a specific time and location. In the second part, we consider a non-stationary model that is based on log-Gaussian Cox processes for positive wildfire count data, and a non-stationary log-Gaussian model for positive burnt area data. Dependence between the positive count data and positive burnt area data is captured by a shared spatio-temporal random effect. Our two-part modeling approach performs well in terms of the prediction score criterion chosen by the data competition organizers. Moreover, our model results show that surface pressure is the most influential driver for the occurrence of a wildfire, whilst surface net solar radiation and surface pressure are the key drivers for large numbers of wildfires, and temperature and evaporation are the key drivers of large burnt areas.
翻译:本文描述红海团队在为欧洲航空2021会议组织的数据竞赛中所使用的方法。 我们开发了一个新的两部分模型, 共同描述野火计数数据和竞争组织者与共变体提供的烧毁地区数据。 我们建议的方法依赖于综合嵌套的Laplace近似值, 加上零碎部分差分方程( INLA- SPDE) 方法。 在第一部分, 一个非静态的非静态空间时空模型用于描述决定特定时间和地点是否发生野火的基本过程。 在第二部分, 我们考虑一种非静止模型, 以日志- Gaussian Cox 进程为基础的野火计数数据, 以及非静止的日志- Gaussian 模型, 与正态部分差分方程式( INLA- SPDE) 方法相结合。 在第一部分, 一个非静态计数的非静态空间时空时空模型, 用来描述在特定时间和地点是否发生野火。 在数据竞争组织者选择的预测分数标准中, 我们的两部分模型结果显示非静止模型模型模型基于正数值, 地压区压区是温度的主要驱动力, 和温度 。