Deep Neural Networks require large amounts of labeled data for their training. Collecting this data at scale inevitably causes label noise.Hence,the need to develop learning algorithms that are robust to label noise. In recent years, k Nearest Neighbors (kNN) emerged as a viable solution to this problem. Despite its success, kNN is not without its problems. Mainly, it requires a huge memory footprint to store all the training samples and it needs an advanced data structure to allow for fast retrieval of the relevant examples, given a query sample. We propose a neural network, termed kNet, that learns to perform kNN. Once trained, we no longer need to store the training data, and processing a query sample is a simple matter of inference. To use kNet, we first train a preliminary network on the data set, and then train kNet on the penultimate layer of the preliminary network.We find that kNet gives a smooth approximation of kNN,and cannot handle the sharp label changes between samples that kNN can exhibit. This indicates that currently kNet is best suited to approximate kNN with a fairly large k. Experiments on two data sets show that this is the regime in which kNN works best,and can therefore be replaced by kNet.In practice, kNet consistently improve the results of all preliminary networks, in all label noise regimes, by up to 3%.


翻译:深心神经网络需要大量的标签数据来进行培训。 在比例上收集这些数据必然会引起标签噪音。 因此, 需要开发一种对标签噪音很可靠的学习算法。 近年来, 近距离邻居( kNNN) 成为了这个问题的可行解决方案。 尽管 kNet 成功, KNN 并不是没有问题。 主要是, 它需要巨大的记忆足迹来存储所有培训样本, 并且它需要一个先进的数据结构来快速检索相关示例, 有查询样本 。 我们建议建立一个神经网络, 称为 kNet, 学会执行 kNN。 一旦经过培训, 我们不再需要存储培训数据, 处理查询样本是一个简单的推论问题。 要使用 kNet, 我们首先在数据集上训练一个初步网络的初步网络, 然后在初步网络的倒数层上训练 kNet 。 我们发现 kNet 能够给 kNN 提供一个平稳的近似近, 并且无法处理 KNN 能够展示的样本之间的尖锐标签变化 。 这表示目前 kNet 最适合于 KNNN 和相当大的 KNN 的 KN 系统, 因此, kNN 只能在两个系统上不断更新 KNWeal 。 kN 。 在两个数据库中, kNB 中改进所有的标签系统, kNW 。

0
下载
关闭预览

相关内容

“知识神经元网络”KNN(Knowledge neural network)是一种以“神经元网络”模型 为基础的知识组织方法。 在“知识神经元网络”KNN 中,所谓的“知识”,是描述一个“知识”的文本,如一个网页、Word、PDF 文档等。
基于深度神经网络的少样本学习综述
专知会员服务
172+阅读 · 2020年4月22日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
基于深度神经网络的少样本学习综述
专知会员服务
172+阅读 · 2020年4月22日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员