We study an edge-weighted online stochastic \emph{Generalized Assignment Problem} with \emph{unknown} Poisson arrivals. In this model, we consider a bipartite graph that contains offline bins and online items, where each offline bin is associated with a $D$-dimensional capacity vector and each online item is with a $D$-dimensional demand vector. Online arrivals are sampled from a set of online item types which follow independent but not necessarily identical Poisson processes. The arrival rate for each Poisson process is unknown. Each online item will either be packed into an offline bin which will deduct the allocated bin's capacity vector and generate a reward, or be rejected. The decision should be made immediately and irrevocably upon its arrival. Our goal is to maximize the total reward of the allocation without violating the capacity constraints. We provide a sample-based multi-phase algorithm by utilizing both pre-existing offline data (named historical data) and sequentially revealed online data. We establish its performance guarantee measured by a competitive ratio. In a simplified setting where $D=1$ and all capacities and demands are equal to $1$, we prove that the ratio depends on the number of historical data size and the minimum number of arrivals for each online item type during the planning horizon, from which we analyze the effect of the historical data size and the Poisson arrival model on the algorithm's performance. We further generalize the algorithm to the general multidimensional and multi-demand setting, and present its parametric performance guarantee. The effect of the capacity's (demand's) dimension on the algorithm's performance is further analyzed based on the established parametric form. Finally, we demonstrate the effectiveness of our algorithms numerically.
翻译:我们研究一个边加权的在线多维任务问题 。 每个 Poisson 进程的到货率未知。 每个在线项目的到货率都会被打入一个离线的文件夹, 并产生奖赏, 或者被拒绝。 每个离线的垃圾桶在到达时应该立即和不可逆转地做出决定。 我们的目标是在不违背能力限制的情况下,最大限度地奖励分配总额。 我们提供基于抽样的多阶段算法, 使用已有的离线数据( 名历史数据) 和连续披露的在线数据。 我们用竞争比率衡量其业绩保证。 在简化地设定 $=1 和所有能力的到货量, 并且从目前 的到现在的运价比率, 我们的到现在的到现在的到现在的到现在的到现在的到现在的到现在的数据, 我们的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的数据, 我们的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的数据的到现在的到现在的到现在的到现在的 。 我们的到现在的到现在的数据的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的数据的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的 的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的到现在的 的到的到现在的到现在的 的到的到的 的 的到的 的到现在的到现在的到的到的到的到的到的到的到是的到的到现在的到是的到的到的到的到的到是的到的到的到的到的到是的到的到的到的到的到的到的到的到的到的到的到的到的到的到现在的到现在的到现在的