项目名称: 测度刚性及其在丢番图逼近中的应用
项目编号: No.11271278
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 史恩慧
作者单位: 苏州大学
项目金额: 60万元
中文摘要: 研究高阶动力系统不变测度的刚性性质以及这些性质在丢番图逼近中的应用。具体内容包括:(1)环面自同态高阶作用下零熵不变测度的刚性;(2)齐性空间对角作用零熵不变测度的刚性及其在Littlewood猜想中的应用;(3)对角作用下测度的等度分布性质及其在Dirichlet定理改进问题中的应用;(4)幂零群作用下的非一致双曲理论及不变测度的刚性性质。 本课题拟通过以上诸问题的研究,丰富和发展一般群作用下遍历理论的理论体系,进一步发掘动力系统方法在解决数论问题中的应用价值。
中文关键词: 遍历性;刚性;不变测度;拓扑熵;丢番图逼近
英文摘要: We plan to study the invariant measure rigidity of higher rank dynamical systems and its applications in Diophantine approximation. The concrete content contains: (1) the rigidity of invariant measures with 0 entropy for the higher rank action of torus endmorphisms; (2) the rigidity of invariant measures with 0 entropy for the diagonal action on homogeneous spaces; (3) the equidistribition properties of measures for diagonal actions and its applications in the improvements of Dirichlet's Theorem; (4) nonuniform hyperbolicity and measure rigidity for nilpotent group actions. Through the investigation of the above problems, we hope to develop the ergodic theory of general group actions, and to explore the value of solving problems in number theory by the dynamical system method.
英文关键词: ergodicity;rigidity;invariant measure;entropy;Diophantine approximation