This paper investigates the construction and analysis of permutation codes under the Chebyshev distance. The direct product group permutation (DPGP) codes, introduced independently by Kl\o ve et al. and Tamo et al., represent the best-known permutation codes in terms of both size and minimum distance. These codes possess algebraic structures that facilitate efficient encoding and decoding algorithms. In particular, this study focuses on recursively extended permutation (REP) codes, which were also introduced by Kl\o ve et al. We examine the properties of REP codes and prove that, in terms of size and minimum distance, the optimal REP code is equivalent to the DPGP codes. Furthermore, we present efficient encoding and decoding algorithms for REP codes.
翻译:暂无翻译