This paper introduces a very fast method for the computation of the resolvent of fractional powers of operators. The analysis is kept in the continuous setting of (potentially unbounded) self adjoint positive operators in Hilbert spaces. The method is based on the Gauss-Laguerre rule, exploiting a particular integral representation of the resolvent. We provide sharp error estimates that can be used to a priori select the number of nodes to achieve a prescribed tolerance.
翻译:本文介绍了一种非常快速的方法来计算操作员分权的分辨率。 分析保存在Hilbert空间( 可能没有约束的) 自我连接的积极性操作员的连续设置中。 方法基于高斯- 拉格雷规则, 利用决定器的特定整体代表。 我们提供了精确的错误估计, 可用于先验选择节点数, 以达到规定的容忍度 。