We present a fast and numerically accurate method for expanding digitized $L \times L$ images representing functions on $[-1,1]^2$ supported on the disk $\{x \in \mathbb{R}^2 : |x|<1\}$ in the harmonics (Dirichlet Laplacian eigenfunctions) on the disk. Our method, which we refer to as the Fast Disk Harmonics Transform (FDHT), runs in $O(L^2 \log L)$ operations. This basis is also known as the Fourier-Bessel basis, and it has several computational advantages: it is orthogonal, ordered by frequency, and steerable in the sense that images expanded in the basis can be rotated by applying a diagonal transform to the coefficients. Moreover, we show that convolution with radial functions can also be efficiently computed by applying a diagonal transform to the coefficients.
翻译:我们提出了一个快速和数字精确的扩大数字化 $L\time L$L 图像的方法,它代表磁盘 $[1,1,2] 支持的 $ ⁇ x\x\ in\mathbb{R\2 : ⁇ x ⁇ 1 ⁇ $在磁盘上的调和器( Drichlet Laplacecian egenforpses) 中支持的 $[1,1,1]2$ 的功能。我们称之为快速磁盘调和器变换(FDHT) 的方法,以$O(L2\log L) 运行。这个基础也称为 Fourier-Bessel 基础,它具有若干计算优势: 它有正方形的,按频率顺序排列,并且可以向导看,在基中扩展的图像可以通过对系数进行对角变换来旋转。此外,我们显示,通过对系数应用对角变法也可以有效地计算出辐射函数的演进。