We present Classy Ensemble, a novel ensemble-generation algorithm for classification tasks, which aggregates models through a weighted combination of per-class accuracy. Tested over 153 machine learning datasets we demonstrate that Classy Ensemble outperforms two other well-known aggregation algorithms -- order-based pruning and clustering-based pruning -- as well as the recently introduced lexigarden ensemble generator. Classy Ensemble also fares favorably with deep networks, over four image datasets: Fashion MNIST, CIFAR10, CIFAR100, and ImageNet.
翻译:我们提出了分类任务新颖的混合生成算法,它通过每类精确度的加权组合汇总模型。测试了超过153个机器学习数据集。测试了超过153个机器学习数据集。我们证明,经典组合比另外两个众所周知的聚合算法 -- -- 基于秩序的裁剪和基于集群的裁剪 -- -- 以及最近引进的Lexigarden 共合体生成器 -- -- 更符合深层网络的要求:时尚MNIST、CIFAR10、CIFAR100和图像网络。</s>