In this paper, we study the classic submodular maximization problem subject to a group fairness constraint under both non-adaptive and adaptive settings. It has been shown that the utility function of many machine learning applications, including data summarization, influence maximization in social networks, and personalized recommendation, satisfies the property of submodularity. Hence, maximizing a submodular function subject to various constraints can be found at the heart of many of those applications. On a high level, submodular maximization aims to select a group of most representative items (e.g., data points). However, the design of most existing algorithms does not incorporate the fairness constraint, leading to under- or over-representation some particular groups. This motivates us to study the fair submodular maximization problem, where we aim to select a group of items to maximize a (possibly non-monotone) submodular utility function subject to a group fairness constraint. To this end, we develop the first constant-factor approximation algorithm for this problem. The design of our algorithm is robust enough to be extended to solving the submodular maximization problem under a more complicated adaptive setting. Moreover, we further extend our study to incorporating a global cardinality constraint.


翻译:在本文中,我们研究了在非适应性和适应性环境下受群体公平制约的典型亚模块最大化问题。已经表明,许多机器学习应用的实用功能,包括数据总和、影响社交网络中的最大化以及个性化建议,满足亚模块特性的特性。因此,在许多这些应用中,可以发现,将受各种制约的亚模块功能最大化是这些应用的核心。在高水平上,亚模块最大化的目的是选择一组最具代表性的项目(例如,数据点)。然而,大多数现有算法的设计并不包含公平性制约,导致某些特定群体的代表性不足或过多。这促使我们研究公平的亚模块最大化问题,以便选择一组项目最大限度地实现(可能非模块化的)亚模块效用功能,但受群体公平性制约。我们为此开发了第一个关于这一问题的恒定要素近似算法。我们的算法设计足够稳健,足以在更复杂的全球适应性设定下解决亚模式最大化问题。此外,我们进一步扩展了我们的基本适应性研究。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
80+阅读 · 2021年11月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月26日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
13+阅读 · 2021年7月20日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员