A social network (SN) is a social structure consisting of a group representing the interaction between them. SNs have recently been widely used and, subsequently, have become suitable and popular platforms for product promotion and information diffusion. People in an SN directly influence each other's interests and behavior. One of the most important problems in SNs is to find people who can have the maximum influence on other nodes in the network in a cascade manner if they are chosen as the seed nodes of a network diffusion scenario. Influential diffusers are people who, if they are chosen as the seed set in a publishing issue in the network, that network will have the most people who have learned about that diffused entity. This is a well-known problem in literature known as influence maximization (IM) problem. Although it has been proven that this is an NP-complete problem and does not have a solution in polynomial time, it has been argued that it has the properties of sub modular functions and, therefore, can be solved using a greedy algorithm. Most of the methods proposed to improve this complexity are based on the assumption that the entire graph is visible. However, this assumption does not hold for many real-world graphs. This study is conducted to extend current maximization methods with link prediction techniques to pseudo-visibility graphs. To this end, a graph generation method called the exponential random graph model (ERGM) is used for link prediction. The proposed method is tested using the data from the Snap dataset of Stanford University. According to the experimental tests, the proposed method is efficient on real-world graphs.
翻译:社会网络( SN) 是一个社会结构, 由代表他们之间互动的团体组成。 SN最近被广泛使用, 并随后成为产品促销和信息传播的合适和受欢迎的平台。 SN 中的人直接影响到彼此的利益和行为。 SN 中最重要的问题之一是, 找到能够对网络中的其他节点产生最大影响的人, 如果他们被选为网络扩散情景的种子节点, 那么他们就是那些被选为网络中出版议题的种子组的人。 如果他们被选为网络中的种子, 这个网络将拥有了解该扩散实体的最合适和受欢迎的平台。 这是在文献中众所周知的、 影响最大化( IM) 问题。 尽管已经证明这是一个NP- 完整的问题, 并且不会在多边化时间里以一个解决方案方式解决网络中的其他节点。 有人争辩说, 它具有子模块函数的特性, 因此, 可以用贪婪的算法来解决。 改进这一复杂程度的方法大多基于整个图表的假设: 这个图表的实验性实体的测试是可见的。 然而, 这个假设是用来维持一个真实的图表的方法。 使用一个真实的图表的方法。 使用一个真实的图表的。 使用这个方法。 使用这个方法 使用一个真实的图表的 使用一个直径化的方法是用来 使用一个直径的方法。 。 的 使用一个直径的方法 。 使用一个直径的方法。 使用一个直图的方法。