We prove that the equivalence of two fundamental problems in the theory of computing. For every polynomial $t(n)\geq (1+\varepsilon)n, \varepsilon>0$, the following are equivalent: - One-way functions exists (which in turn is equivalent to the existence of secure private-key encryption schemes, digital signatures, pseudorandom generators, pseudorandom functions, commitment schemes, and more); - $t$-time bounded Kolmogorov Complexity, $K^t$, is mildly hard-on-average (i.e., there exists a polynomial $p(n)>0$ such that no PPT algorithm can compute $K^t$, for more than a $1-\frac{1}{p(n)}$ fraction of $n$-bit strings). In doing so, we present the first natural, and well-studied, computational problem characterizing the feasibility of the central private-key primitives and protocols in Cryptography.


翻译:我们证明了计算理论中两个基本问题的等同性。对于每个多数值$t(n)\geq (1 ⁇ varepsilon)n,\varepsilon>0美元,以下是等同的: - 单向功能存在(这反过来相当于存在安全的私人钥匙加密计划、数字签名、伪随机生成器、伪随机功能、承诺计划等等); - 美元时装的Kolmogorov复杂度,K$t,是轻度的硬性(即存在一个多数值$p(n)>0美元,因此没有PPT算法可以计算$t$,超过1美元/frac{1 ⁇ p(n)美元。 这样做时,我们提出了计算中央私人钥匙原始和协议可行性的第一个自然和仔细研究的计算问题。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关主题
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员