We prove that the equivalence of two fundamental problems in the theory of computing. For every polynomial $t(n)\geq (1+\varepsilon)n, \varepsilon>0$, the following are equivalent: - One-way functions exists (which in turn is equivalent to the existence of secure private-key encryption schemes, digital signatures, pseudorandom generators, pseudorandom functions, commitment schemes, and more); - $t$-time bounded Kolmogorov Complexity, $K^t$, is mildly hard-on-average (i.e., there exists a polynomial $p(n)>0$ such that no PPT algorithm can compute $K^t$, for more than a $1-\frac{1}{p(n)}$ fraction of $n$-bit strings). In doing so, we present the first natural, and well-studied, computational problem characterizing the feasibility of the central private-key primitives and protocols in Cryptography.
翻译:我们证明了计算理论中两个基本问题的等同性。对于每个多数值$t(n)\geq (1 ⁇ varepsilon)n,\varepsilon>0美元,以下是等同的: - 单向功能存在(这反过来相当于存在安全的私人钥匙加密计划、数字签名、伪随机生成器、伪随机功能、承诺计划等等); - 美元时装的Kolmogorov复杂度,K$t,是轻度的硬性(即存在一个多数值$p(n)>0美元,因此没有PPT算法可以计算$t$,超过1美元/frac{1 ⁇ p(n)美元。 这样做时,我们提出了计算中央私人钥匙原始和协议可行性的第一个自然和仔细研究的计算问题。