Recent word embeddings techniques represent words in a continuous vector space, moving away from the atomic and sparse representations of the past. Each such technique can further create multiple varieties of embeddings based on different settings of hyper-parameters like embedding dimension size, context window size and training method. One additional variety appears when we especially consider the Dual embedding space techniques which generate not one but two-word embeddings as output. This gives rise to an interesting question - "is there one or a combination of the two word embeddings variety, which works better for a specific task?". This paper tries to answer this question by considering all of these variations. Herein, we compare two classical embedding methods belonging to two different methodologies - Word2Vec from window-based and Glove from count-based. For an extensive evaluation after considering all variations, a total of 84 different models were compared against semantic, association and analogy evaluations tasks which are made up of 9 open-source linguistics datasets. The final Word2vec reports showcase the preference of non-default model for 2 out of 3 tasks. In case of Glove, non-default models outperform in all 3 evaluation tasks.


翻译:最近的嵌入字技术代表着连续矢量空间中的单词, 远离原子和稀疏的过去表达方式。 每一种这样的技术都可以进一步根据超参数的不同设置, 创建多种嵌入式。 例如嵌入维度大小、 上下文窗口大小和培训方法。 当我们特别考虑“ 双嵌入空间技术” 时, 产生一个而不是两个字嵌入输出。 这就产生了一个有趣的问题 : “ 是存在一个还是结合两个词嵌入式, 这对于特定任务效果更好? ” 。 本文试图通过考虑所有这些变异来回答这个问题。 这里, 我们比较了两种属于两种不同方法的经典嵌入式方法 - Word2Vec 和 Glove 。 在考虑所有变异之后进行的广泛评估中, 总共84种不同的模型与由9个开放源语言数据集组成的语系、 关联和类比评价任务。 Word2vec 最终的报告展示了所有3项任务中的非默认模型的偏好。

0
下载
关闭预览

相关内容

分散式表示即将语言表示为稠密、低维、连续的向量。 研究者最早发现学习得到词嵌入之间存在类比关系。比如apple−apples ≈ car−cars, man−woman ≈ king – queen 等。这些方法都可以直接在大规模无标注语料上进行训练。词嵌入的质量也非常依赖于上下文窗口大小的选择。通常大的上下文窗口学到的词嵌入更反映主题信息,而小的上下文窗口学到的词嵌入更反映词的功能和上下文语义信息。
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Arxiv
1+阅读 · 2021年1月18日
Arxiv
4+阅读 · 2020年5月25日
Arxiv
6+阅读 · 2018年6月20日
Arxiv
6+阅读 · 2018年6月18日
Arxiv
10+阅读 · 2018年3月22日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Top
微信扫码咨询专知VIP会员