We address Lagrangian drift simulation in geophysical dynamics and explore deep learning approaches to overcome known limitations of state-of-the-art model-based and Markovian approaches in terms of computational complexity and error propagation. We introduce a novel architecture, referred to as DriftNet, inspired from the Eulerian Fokker-Planck representation of Lagrangian dynamics. Numerical experiments for Lagrangian drift simulation at the sea surface demonstrates the relevance of DriftNet w.r.t. state-of-the-art schemes. Benefiting from the fully-convolutional nature of Drift-Net, we explore through a neural inversion how to diagnose modelderived velocities w.r.t. real drifter trajectories.
翻译:我们探讨地球物理动态中的拉格朗日漂流模拟,并探索深层次的学习方法,以克服在计算复杂性和错误传播方面最先进的模型和马尔科维安方法的已知局限性。我们引入了被称为DriftNet的新型结构,从拉格朗日动态的Eulirian Fokker-Planck代表中汲取了灵感。在海面对拉格朗日漂流模拟的数值实验显示了DriftNet w.r.t. st. st. 最先进的方法的相关性。我们从Drift-Net的完全革命性中获益,通过神经反向探索如何诊断模型生成的流速率。