Person re-identification (re-ID) tackles the problem of matching person images with the same identity from different cameras. In practical applications, due to the differences in camera performance and distance between cameras and persons of interest, captured person images usually have various resolutions. We name this problem as Cross-Resolution Person Re-identification which brings a great challenge for matching correctly. In this paper, we propose a Deep High-Resolution Pseudo-Siamese Framework (PS-HRNet) to solve the above problem. Specifically, in order to restore the resolution of low-resolution images and make reasonable use of different channel information of feature maps, we introduce and innovate VDSR module with channel attention (CA) mechanism, named as VDSR-CA. Then we reform the HRNet by designing a novel representation head to extract discriminating features, named as HRNet-ReID. In addition, a pseudo-siamese framework is constructed to reduce the difference of feature distributions between low-resolution images and high-resolution images. The experimental results on five cross-resolution person datasets verify the effectiveness of our proposed approach. Compared with the state-of-the-art methods, our proposed PS-HRNet improves 3.4\%, 6.2\%, 2.5\%,1.1\% and 4.2\% at Rank-1 on MLR-Market-1501, MLR-CUHK03, MLR-VIPeR, MLR-DukeMTMC-reID, and CAVIAR datasets, respectively. Our code is available at \url{https://github.com/zhguoqing}.
翻译:个人再识别(re-ID)解决了将个人图像与不同相机的相同身份相匹配的问题。在实际应用中,由于相机性能不同,相机和感兴趣的人之间的距离不同,被捕获的人图像通常有不同的分辨率。我们将此问题命名为跨分辨率个人再识别,这给正确匹配带来了巨大的挑战。我们在此文件中提议了一个深高分辨率普瑟多-西亚梅塞框架(PS-HRNet)来解决上述问题。具体地,为了恢复低分辨率图像的解析,合理使用地貌地图的不同频道信息,我们引入并创新了带有频道关注(CA)机制的VDSR模块。然后,我们通过设计新的代表头来提取区分特征,名为HRNet-REID。此外,我们构建了一个伪西亚框架,以缩小低分辨率图像和高分辨率图像之间的特征分布差异。 五个跨分辨率个人数据集的实验结果证实了我们拟议的方法的有效性。 与州-R-R-RIS-15/MRC-1MS、M-R-RQ-MQ-MQ-MAS-RMQMQMS 和MQ-RQ-MQ-RMQ-RQ-MQ-MQ-MQ-MQ-MQ-MQ-MQ-MQ-MQ-MQ-MQ-MQ-MQ-MQ-R/MQ-MQ-MQ-S-M-R-R/MQ-MQ-S-R/M-M-R/M-MQ-MR-S-S-S-MQ-MAR-R-R-R-R-R-R-M-M-S-0-S-R-R-R-R-R-R-S-S-R-R-R-R-M-R-R-R-R-M-M-M-M-M-M-M-M-M-M-R-M-M-RQ-RAR-S-M-S-S-R-R-R-R-M-M-M-R-R-M-M-R-R-M-R-R-R-R-M-M-M-R-M-M-M-M-M-R-M-M-M-