The use of quantum cryptography in everyday applications has gained attention in both industrial and academic fields. Due to advancements in quantum electronics, practical quantum devices are already available in the market, and ready for wider use. Quantum Key Distribution (QKD) is a crucial aspect of quantum cryptography, which involves generating and distributing symmetric cryptographic keys between geographically separated users using principles of quantum physics. Many successful QKD networks have been established to test different solutions. The objective of this paper is to delve into the potential of utilizing established routing design techniques in the context of quantum key distribution, a field distinguished by its unique properties rooted in the principles of quantum mechanics. However, the implementation of these techniques poses substantial challenges, including quantum memory decoherence, key rate generation, latency delays, inherent noise in quantum systems, limited communication ranges, and the necessity for highly specialized hardware. This paper conducts an in-depth examination of essential research pertaining to the design methodologies for quantum key distribution. It also explores the fundamental aspects of quantum routing and the associated properties inherent to quantum QKD. This paper elucidates the necessary steps for constructing efficient and resilient QKD networks. In summarizing the techniques relevant to QKD networking and routing, including their underlying principles, protocols, and challenges, this paper sheds light on potential applications and delineates future research directions in this burgeoning field.
翻译:暂无翻译