We present a simple method to approximate Rao's distance between multivariate normal distributions based on discretizing curves joining normal distributions and approximating Rao distances between successive nearby normal distributions on the curve by Jeffreys divergence. We consider experimentally the linear interpolation curves in the ordinary, natural and expectation parameterizations of the normal distributions, and compare these curves with a curve derived from the Calvo and Oller's isometric embedding of the Fisher-Rao $d$-variate normal manifold into the cone of $(d+1)\times (d+1)$ symmetric positive-definite matrices [Journal of multivariate analysis 35.2 (1990): 223-242]. We report on our experiments and assess the quality of our approximation technique by comparing the numerical approximations with lower and upper bounds. Finally, we present some information-geometric properties of the Calvo and Oller's isometric embedding.
翻译:我们提出一个简单的方法,以不同曲线连接正常分布和拉奥在Jeffrey的曲线上相近正常分布之间相近距离相近的拉奥距离为基础,来估计Rao在多变正常分布之间的距离。我们通过实验来考虑正常分布的普通、自然和预期参数化中的线性内插曲线,并将这些曲线与卡尔沃和奥尔勒的等分曲线比较,将Fisher-Rao $d$d- vilate 正常组合嵌入(d+1)/time(d+1)$正对称正对称定矩阵[多变量分析杂志35.2(1990年):223-242]。我们报告我们的实验情况,并通过将数值近似技术与下界和上界比较来评估我们近似技术的质量。最后,我们介绍了Calvo和Oller的偏差嵌入的一些信息几何特性。</s>