We propose an algorithm for taming Normalizing Flow models - changing the probability that the model will produce a specific image or image category. We focus on Normalizing Flows because they can calculate the exact generation probability likelihood for a given image. We demonstrate taming using models that generate human faces, a subdomain with many interesting privacy and bias considerations. Our method can be used in the context of privacy, e.g., removing a specific person from the output of a model, and also in the context of debiasing by forcing a model to output specific image categories according to a given target distribution. Taming is achieved with a fast fine-tuning process without retraining the model from scratch, achieving the goal in a matter of minutes. We evaluate our method qualitatively and quantitatively, showing that the generation quality remains intact, while the desired changes are applied.
翻译:我们提出了一种算法来驯服标准化流模型,改变模型生成特定图像或图像类别的概率。我们专注于标准化流,因为它们可以计算给定图像的精确生成概率似然。我们展示了使用生成人脸模型的驯服方法,这是一个具有许多有趣的隐私和偏见考虑的子领域。我们的方法可以在隐私方面使用,例如从模型输出中删除特定的人物,也可以在去偏方面使用,通过迫使模型根据给定目标分布输出特定的图像类别。我们通过快速微调过程实现了驯服,无需从头开始重新训练模型,只需数分钟即可达成目标。我们在质量和数量上进行了评估,展示了生成质量保持完好,同时应用所需的改变。