Invariants and conservation laws convey critical information about the underlying dynamics of a system, yet it is generally infeasible to find them from large-scale data without any prior knowledge or human insight. We propose ConservNet to achieve this goal, a neural network that spontaneously discovers a conserved quantity from grouped data where the members of each group share invariants, similar to a general experimental setting where trajectories from different trials are observed. As a neural network trained with a novel and intuitive loss function called noise-variance loss, ConservNet learns the hidden invariants in each group of multi-dimensional observables in a data-driven, end-to-end manner. Our model successfully discovers underlying invariants from the simulated systems having invariants as well as a real-world double pendulum trajectory. Since the model is robust to various noises and data conditions compared to baseline, our approach is directly applicable to experimental data for discovering hidden conservation laws and further, general relationships between variables.
翻译:变量和养护法传递关于系统基本动态的关键信息,但通常无法在没有事先知识或人类洞察的情况下从大规模数据中找到这些信息。我们提议ConservNet来实现这一目标。我们提议,一个神经网络,从每个群体成员共享变量的分组数据中自发发现节量,类似于一个一般实验环境,在这种环境中,观察到不同试验的轨迹。一个神经网络,受过新颖和直觉损失功能的训练,称为噪声变化损失。 ConservNet以数据驱动、端到端的方式学习每组多维可观测物中隐藏的变量。我们的模型成功地发现了模拟系统中具有变量的内在变量,以及现实世界的双钟轨道。由于模型对各种噪音和数据条件与基线相比是坚固的,因此我们的方法直接适用于实验数据,以发现隐藏的保存法以及各种变量之间的一般关系。