Image deblurring is a process of restoring a high quality image from the corresponding blurred image. Significant progress in this field has been made possible by the emergence of various effective deep learning models, including CNNs and Transformers. However, these methods often face the dilemma between eliminating long-range blur degradation perturbations and maintaining computational efficiency, which hinders their practical application. To address this issue, we propose an efficient image deblurring network that leverages selective structured state spaces model to aggregate enriched and accurate features. Specifically, we design an aggregate local and global block (ALGBlock) to capture and fuse both local invariant properties and non-local information. The ALGBlock consists of two blocks: (1) The local block models local connectivity using simplified channel attention. (2) The global block captures long-range dependency features with linear complexity through selective structured state spaces. Nevertheless, we note that the image details are local features of images, we accentuate the local part for restoration by recalibrating the weight when aggregating the two branches for recovery. Experimental results demonstrate that the proposed method outperforms state-of-the-art approaches on widely used benchmarks, highlighting its superior performance.
翻译:暂无翻译