The problem of robust hypothesis testing is studied, where under the null and the alternative hypotheses, the data-generating distributions are assumed to be in some uncertainty sets, and the goal is to design a test that performs well under the worst-case distributions over the uncertainty sets. In this paper, uncertainty sets are constructed in a data-driven manner using kernel method, i.e., they are centered around empirical distributions of training samples from the null and alternative hypotheses, respectively; and are constrained via the distance between kernel mean embeddings of distributions in the reproducing kernel Hilbert space, i.e., maximum mean discrepancy (MMD). The Bayesian setting and the Neyman-Pearson setting are investigated. For the Bayesian setting where the goal is to minimize the worst-case error probability, an optimal test is firstly obtained when the alphabet is finite. When the alphabet is infinite, a tractable approximation is proposed to quantify the worst-case average error probability, and a kernel smoothing method is further applied to design test that generalizes to unseen samples. A direct robust kernel test is also proposed and proved to be exponentially consistent. For the Neyman-Pearson setting, where the goal is to minimize the worst-case probability of miss detection subject to a constraint on the worst-case probability of false alarm, an efficient robust kernel test is proposed and is shown to be asymptotically optimal. Numerical results are provided to demonstrate the performance of the proposed robust tests.


翻译:研究了鲁棒性假设检验,其中在零假设和备择假设下,数据生成的分布被假定为一些不确定性集合,并且目标是设计一个在最坏情况下数据分布的检验。本文利用核方法构建了不确定性集合,即以来自零假设和备择假设的训练样本的经验分布为中心的集合,并通过核均值嵌入的距离约束,例如 maximum mean discrepancy (MMD)。研究了贝叶斯和Neyman-Pearson两种情况。对于贝叶斯的情况,最初获得了在字母表是有限的情况下最小化最坏情况下错误概率的最优检验。当字母表是无限的时候,提出了一个可行的近似方法来量化最坏情况下平均错误概率,并进一步应用了核平滑方法来设计适用于未见过样本的检验。还提出了一个直接的鲁棒性核检验,并被证明是指数一致的。对于Neyman-Pearson的情况,目标是在最坏情况下漏检概率的约束下最小化误报概率,并提出了一种高效的鲁棒性核检验,并且被证明是渐进最优的。提供了数值结果来证明所提出的鲁棒检验的性能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员