One of the challenges of handwriting recognition is to transcribe a large number of vastly different writing styles. State-of-the-art approaches do not explicitly use information about the writer's style, which may be limiting overall accuracy due to various ambiguities. We explore models with writer-dependent parameters which take the writer's identity as an additional input. The proposed models can be trained on datasets with partitions likely written by a single author (e.g. single letter, diary, or chronicle). We propose a Writer Style Block (WSB), an adaptive instance normalization layer conditioned on learned embeddings of the partitions. We experimented with various placements and settings of WSB and contrastively pre-trained embeddings. We show that our approach outperforms a baseline with no WSB in a writer-dependent scenario and that it is possible to estimate embeddings for new writers. However, domain adaptation using simple finetuning in a writer-independent setting provides superior accuracy at a similar computational cost. The proposed approach should be further investigated in terms of training stability and embedding regularization to overcome such a baseline.
翻译:笔迹识别的挑战之一是将大量非常不同的写作风格进行抄写。 最先进的方法没有明确使用关于作家风格的信息,这可能由于各种模糊不清而限制总体准确性。 我们探索以依赖作者身份作为额外投入的、以作者身份为依附参数的模型。 拟议的模型可以在数据集方面得到培训,其中含有可能由单一作者撰写的分区(如单封信、日记或记录)。 我们提议了一个作家风格区块(WSB),这是一个适应性范例正常化层,其条件是了解的分区嵌入。我们试验了WSB的各种位置和设置以及对比性强的预先训练嵌入。我们表明,我们的方法超越了一个基线,没有WSB,在依赖作者的情况下可以估计新作者的嵌入。然而,在依赖作者的环境中使用简单的微调使域适应以类似的计算成本提供更准确性。在培训稳定性和嵌入正规化以克服这一基线方面,应当进一步调查拟议的方法。