Model Predictive Control (MPC) is a popular strategy for controlling robots but is difficult for systems with contact due to the complex nature of hybrid dynamics. To implement MPC for systems with contact, dynamic models are often simplified or contact sequences fixed in time in order to plan trajectories efficiently. In this work, we extend Hybrid iterative Linear Quadratic Regulator to work in a MPC fashion (HiLQR MPC) by 1) modifying how the cost function is computed when contact modes do not align, 2) utilizing parallelizations when simulating rigid body dynamics, and 3) using efficient analytical derivative computations of the rigid body dynamics. The result is a system that can modify the contact sequence of the reference behavior and plan whole body motions cohesively -- which is crucial when dealing with large perturbations. HiLQR MPC is tested on two systems: first, the hybrid cost modification is validated on a simple actuated bouncing ball hybrid system. Then HiLQR MPC is compared against methods that utilize centroidal dynamic assumptions on a quadruped robot (Unitree A1). HiLQR MPC outperforms the centroidal methods in both simulation and hardware tests.
翻译:模型预测控制(MPC)是控制机器人的流行战略,但由于混合动态的复杂性质,对接触系统的系统来说是很难做到的。为了对有接触的系统实施移动控制(MPC),动态模型往往被简化或及时固定接触序列,以便有效规划轨迹。在这项工作中,我们扩大混合迭代线性线性二次曲线调节器,使之以MPC(HILQR MPC)方式工作,1 修改在接触模式不协调时如何计算成本函数的方法;2 在模拟僵硬体动态时使用平行功能;3 使用硬体动态的有效分析衍生物计算。结果是一个系统,可以对参考行为和整体动作的接触序列进行修改,在处理大扰动时这一点至关重要。HILQR MPC在两个系统中进行了测试:首先,混合成本修改在简单的操作性振动振动脉动型球混合系统上得到验证。然后将HILQR MPC与在模拟机器人(Errree A1)和硬体测试方法中,HLR MPC将硬体的硬体测试法都用于硬体的硬体。