Inspired by human behavior when traveling over unknown terrain, this study proposes the use of probing strategies and integrates them into a traversability analysis framework to address safe navigation on unknown rough terrain. Our framework integrates collapsibility information into our existing traversability analysis, as vision and geometric information alone could be misled by unpredictable non-rigid terrains such as soft soil, bush area, or water puddles. With the new traversability analysis framework, our robot has a more comprehensive assessment of unpredictable terrain, which is critical for its safety in outdoor environments. The pipeline first identifies the terrain's geometric and semantic properties using an RGB-D camera and desired probing locations on questionable terrains. These regions are probed using a force sensor to determine the risk of terrain collapsing when the robot steps over it. This risk is formulated as a collapsibility metric, which estimates an unpredictable region's ground collapsibility. Thereafter, the collapsibility metric, together with geometric and semantic spatial data, is combined and analyzed to produce global and local traversability grid maps. These traversability grid maps tell the robot whether it is safe to step over different regions of the map. The grid maps are then utilized to generate optimal paths for the robot to safely navigate to its goal. Our approach has been successfully verified on a quadrupedal robot in both simulation and real-world experiments.
翻译:受人类在未知地形上行走时的行为启发,本研究建议使用探测策略,并将这些策略纳入可穿越性分析框架,以解决在未知的粗地形上安全航行的问题。我们的框架将折叠信息纳入我们现有的可穿越性分析,因为视觉和几何信息本身可能被不可预测的非硬地形,如软土壤、灌木区或水坑等误导。随着新的可穿越性分析框架,我们的机器人对不可预测的地形进行了更全面的评估,这对室外环境的安全至关重要。管道首先使用 RGB-D 相机确定地形的几何和语义特性,并在可疑的地形上进行预想的勘测。这些区域的勘测使用一种力感测,以确定在机器人跨过地面时地形崩溃的风险。这一风险被表述为一种可折叠合性指标,用来估计不可预测的区域地面的折叠叠合性。随后,可折叠度指标与地理测量和语义空间数据相结合,用来绘制全球和地方可移动性电网图。这些可移动性电路图的精确性传感器测量方法被用来进行安全飞行。