We introduce a training objective for continuous normalizing flows that can be used in the absence of samples but in the presence of an energy function. Our method relies on either a prescribed or a learnt interpolation $f_t$ of energy functions between the target energy $f_1$ and the energy function of a generalized Gaussian $f_0(x) = |x/\sigma|^p$. This, in turn, induces an interpolation of Boltzmann densities $p_t \propto e^{-f_t}$ and we aim to find a time-dependent vector field $V_t$ that transports samples along this family of densities. Concretely, this condition can be translated to a PDE between $V_t$ and $f_t$ and we minimize the amount by which this PDE fails to hold. We compare this objective to the reverse KL-divergence on Gaussian mixtures and on the $\phi^4$ lattice field theory on a circle.
翻译:我们引入了连续正常流动的培训目标, 可以在没有样本的情况下使用, 但是在有能源功能的情况下使用。 我们的方法取决于目标能源$f_ 1美元和通用高斯元$_0(x) = ⁇ x/\ sigma ⁇ p$ 之间的能源函数的指定或学习的内插 $t 美元。 这反过来又引起博尔兹曼密度的内插 $p_ t\ propto e ⁇ - f_ t} 美元, 我们的目标是找到一个基于时间的矢量字段 $V_ t$, 用以在密度组中运输样品。 具体地说, 这个条件可以转换为 $V_ t$ 和 $f_ t$ 之间的PDE, 并且我们尽可能减少这个PDE无法维持的数值。 我们将此目标与高斯混合物和圆上 $\phie4美元的拉提尔理论的反KL- divergence 作了比较 。