Labeling social-media data for custom dimensions of toxicity and social bias is challenging and labor-intensive. Existing transfer and active learning approaches meant to reduce annotation effort require fine-tuning, which suffers from over-fitting to noise and can cause domain shift with small sample sizes. In this work, we propose a novel Active Transfer Few-shot Instructions (ATF) approach which requires no fine-tuning. ATF leverages the internal linguistic knowledge of pre-trained language models (PLMs) to facilitate the transfer of information from existing pre-labeled datasets (source-domain task) with minimum labeling effort on unlabeled target data (target-domain task). Our strategy can yield positive transfer achieving a mean AUC gain of 10.5% compared to no transfer with a large 22b parameter PLM. We further show that annotation of just a few target-domain samples via active learning can be beneficial for transfer, but the impact diminishes with more annotation effort (26% drop in gain between 100 and 2000 annotated examples). Finally, we find that not all transfer scenarios yield a positive gain, which seems related to the PLMs initial performance on the target-domain task.
翻译:为毒性和社会偏见的定制层面贴标签的社会媒体数据具有挑战性和劳动密集型。现有的旨在减少批注努力的转移和积极学习方法需要微调,因为过度适应噪音,并可能导致小样本规模的域转移。在这项工作中,我们建议采用新型的主动传输少发指示(ATF)方法,不需要微调。ATF利用预先培训的语言模型的内部语言知识,便利从现有的预贴标签数据集(源-域任务)中传递信息,同时对未贴标签的目标数据(目标-域任务)进行最低限度的标签努力。我们的战略可以产生积极的传输,使ACU平均增加10.5%,而没有使用大型22b参数PLM进行转移。我们进一步表明,通过积极学习只对几个目标-域样本进行批注,有利于转移,但影响会随着更多的批注努力(26 % 收益从100到2000年之间下降,一个附加说明的例子)。最后,我们发现,并非所有转移情景都产生积极收益,这似乎与目标-任务的初步业绩有关。