Recent years have witnessed significant progress in 3D hand mesh recovery. Nevertheless, because of the intrinsic 2D-to-3D ambiguity, recovering camera-space 3D information from a single RGB image remains challenging. To tackle this problem, we divide camera-space mesh recovery into two sub-tasks, i.e., root-relative mesh recovery and root recovery. First, joint landmarks and silhouette are extracted from a single input image to provide 2D cues for the 3D tasks. In the root-relative mesh recovery task, we exploit semantic relations among joints to generate a 3D mesh from the extracted 2D cues. Such generated 3D mesh coordinates are expressed relative to a root position, i.e., wrist of the hand. In the root recovery task, the root position is registered to the camera space by aligning the generated 3D mesh back to 2D cues, thereby completing camera-space 3D mesh recovery. Our pipeline is novel in that (1) it explicitly makes use of known semantic relations among joints and (2) it exploits 1D projections of the silhouette and mesh to achieve robust registration. Extensive experiments on popular datasets such as FreiHAND, RHD, and Human3.6M demonstrate that our approach achieves state-of-the-art performance on both root-relative mesh recovery and root recovery. Our code is publicly available at https://github.com/SeanChenxy/HandMesh.
翻译:近些年来,在3D 手网模恢复方面取得了显著进展。 然而,由于2D-3D的内在模糊性,从一个 RGB 图像中恢复相机- 空间 3D 信息仍具有挑战性。 要解决这个问题,我们将相机- 空间网格恢复分为两个子任务, 即根- 移动网模恢复和根部恢复。 首先, 从一个输入图像中提取了联合标志和硅影, 为 3D 任务提供 2D 线索。 在根- 重建网格恢复任务中, 我们利用联合之间的语义关系从提取的 2D 信号中生成一个 3D 空间 3D 信息。 这样生成的 3D 网格坐标与根位置相对, 即手腕。 在根恢复任务中, 将生成的 3D 根网格网格网格网模恢复和根部显示到摄像空间, 3DMS 3D 图像恢复任务 。 我们的网格- 将使用已知的网格- 和网格- 网格- 联合关系, 在所提取的2 DSLSDMS 上, 的 和SDMSLA 实现 的 快速 的 的快速 和图像的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟和图像, 和图像的模拟的模拟的模拟的模拟的模拟的模拟的模拟运行