Scientists frequently generalize population level causal quantities such as average treatment effect from a source population to a target population. When the causal effects are heterogeneous, differences in subject characteristics between the source and target populations may make such a generalization difficult and unreliable. Reweighting or regression can be used to adjust for such differences when generalizing. However, these methods typically suffer from large variance if there is limited covariate distribution overlap between the two populations. We propose a generalizability score to address this issue. The score can be used as a yardstick to select target subpopulations for generalization. A simplified version of the score avoids using any outcome information and thus can prevent deliberate biases associated with inadvertent access to such information. Both simulation studies and real data analysis demonstrate convincing results for such selection.


翻译:科学家经常将人口水平因果数量普遍化,例如从源人口到目标人口的平均治疗效果。当因果影响各异时,源和目标人口在主题特征上的差异可能使这种概括化变得困难和不可靠。在概括化时,可以使用加权或回归来调整这种差异。但是,如果两个人口群体之间的共变分布重叠有限,这些方法通常会有很大差异。我们建议用一个通用分来解决这个问题。这个分可以作为标准,选择供概括化的目标亚人口。一个简化的分可以避免使用任何结果信息,从而可以防止与无意获取这类信息有关的蓄意偏见。模拟研究和真实数据分析都为这种选择提供了令人信服的结果。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员