This paper proposes a simple unified approach to testing transformations on cumulative distribution functions (CDFs) in the presence of nuisance parameters. The proposed test is constructed based on a new characterization that avoids the estimation of nuisance parameters. The critical values are obtained through a numerical bootstrap method which can easily be implemented in practice. Under suitable conditions, the proposed test is shown to be asymptotically size controlled and consistent. The local power property of the test is established. Finally, Monte Carlo simulations and an empirical study show that the test performs well on finite samples.
翻译:本文件提出在出现麻烦参数的情况下,对累积分布功能(CDFs)的转换进行测试的简单统一的方法。拟议的测试是根据避免估计麻烦参数的新特征构建的。关键值是通过数字式的陷阱方法获得的,该方法在实际中可以很容易地实施。在适当条件下,拟议的测试显示其大小不受干扰,且具有一致性。测试的局部功率特性已经确定。最后,蒙特卡洛模拟和一项经验性研究显示,测试在有限样品上效果良好。