In this paper, we present modifications of the iterative hard thresholding (IHT) method for recovery of jointly row-sparse and low-rank matrices. In particular a Riemannian version of IHT is considered which significantly reduces computational cost of the gradient projection in the case of rank-one measurement operators, which have concrete applications in blind deconvolution. Experimental results are reported that show near-optimal recovery for Gaussian and rank-one measurements, and that adaptive stepsizes give crucial improvement. A Riemannian proximal gradient method is derived for the special case of unknown sparsity.


翻译:在本文中,我们介绍了对迭代硬阈值(IHT)方法的修改,以回收联合行片状和低位矩阵。特别是,考虑到里曼尼版的IHT可大幅降低一级测量操作员的梯度预测的计算成本,这些操作员在盲目分解中具有具体应用。据报告,实验结果显示,高斯和一级测量的恢复接近最佳,适应性分级具有关键的改进作用。 一种里曼尼级准度梯度方法是针对未知的气候的特例制定的。

0
下载
关闭预览

相关内容

【干货书】机器学习Primer,122页pdf
专知会员服务
107+阅读 · 2020年10月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【干货书】机器学习Primer,122页pdf
专知会员服务
107+阅读 · 2020年10月5日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员