Object detection is a key function in machine perception. Usually, their performance is evaluated based on accuracy metrics such as mean Average Precision (mAP). In this paper, we examine object detectors by their safety in the context of Autonomous Driving (AD). More concretely, we find mAP, which in turn employs the Intersection-over-Union (IoU) measure, not particularly suitable for the notion of safety in AD. Instead, we propose a novel safety metric as a more direct safety reflector, using the Intersection-over-Ground-Truth (IoGT) measure and a distance ratio between predictions and ground truths. We also formulate a safety-aware loss function that can improve an object detector and significantly reduce its unsafe predictions, compared to ordinary ones such as the SmoothL1 loss. Our experiments with open-sourced models and two datasets demonstrate the validity of our consideration and proposals.
翻译:物体探测是机器感知中的一个关键功能。 通常, 其性能是根据平均精度( mAP) 等精确度量来评估的。 在本文中, 我们根据物体探测器在自动驾驶( AD) 中的安全性来检查物体探测器。 更具体地说, 我们发现, 我们发现物体探测器, 后者又采用跨部门统合( IoU) 措施, 特别不适合 AD 中的安全性概念。 相反, 我们建议采用一种新的安全措施作为更直接的安全反射器, 使用跨部门跨交界( IoGT) 措施, 以及预测和地面真理之间的距离率。 我们还制定了一种安全感损失功能, 能够改进物体探测器, 并大大降低其不安全预测, 与平滑L1 损失 等普通措施相比。 我们用开源模型和两个数据集进行的实验证明了我们审议和建议的有效性 。