In this paper, we design Top-DP, a novel solution to optimize the differential privacy protection of decentralized image classification systems. The key insight of our solution is to leverage the unique features of decentralized communication topologies to reduce the noise scale and improve the model usability. (1) We enhance the DP-SGD algorithm with this topology-aware noise reduction strategy, and integrate the time-aware noise decay technique. (2) We design two novel learning protocols (synchronous and asynchronous) to protect systems with different network connectivities and topologies. We formally analyze and prove the DP requirement of our proposed solutions. Experimental evaluations demonstrate that our solution achieves a better trade-off between usability and privacy than prior works. To the best of our knowledge, this is the first DP optimization work from the perspective of network topologies.
翻译:在本文中,我们设计了Top-DP,这是优化分散式图像分类系统差异隐私保护的新解决方案。我们解决方案的关键洞察力是利用分散式通信结构的独特性,以减少噪音规模,改进模型可用性。 (1) 我们用这种具有地形意识的减少噪音战略加强DP-SGD算法,并整合有时间意识的噪声衰减技术。(2) 我们设计了两个新颖的学习程序(同步和不同步),以保护不同网络连接和地形的系统。我们正式分析和证明我们拟议解决方案的DP要求。实验性评估表明,我们的解决方案比以前的工作更能实现对可用性和隐私的权衡。根据我们的知识,这是DP从网络结构的角度进行的第一个优化工作。