Personalized Federated Learning (PFL) has recently seen tremendous progress, allowing the design of novel machine learning applications to preserve the privacy of the training data. Existing theoretical results in this field mainly focus on distributed optimization for minimization problems. This paper is the first to study PFL for saddle point problems (which cover a broader class of optimization problems), allowing for a more rich class of applications requiring more than just solving minimization problems. In this work, we consider a recently proposed PFL setting with the mixing objective function, an approach combining the learning of a global model together with locally distributed learners. Unlike most previous work, which considered only the centralized setting, we work in a more general and decentralized setup that allows us to design and analyze more practical and federated ways to connect devices to the network. We proposed new algorithms to address this problem and provide a theoretical analysis of the smooth (strongly-)convex-(strongly-)concave saddle point problems in stochastic and deterministic cases. Numerical experiments for bilinear problems and neural networks with adversarial noise demonstrate the effectiveness of the proposed methods.


翻译:个人化联邦学习(PFL)最近取得了巨大进展,使得设计新的机器学习应用软件能够保护培训数据的隐私。这个领域现有的理论结果主要侧重于分散优化以尽量减少问题。本文是第一个针对马鞍点问题(包括更广泛的优化问题类别)对PFL进行研究的论文,允许更丰富的应用类别,不仅需要解决最小化问题。在这项工作中,我们认为最近提出的PFL设置与混合目标功能相结合,一种将学习全球模型与当地分布的学习者相结合的方法。与大多数以前只考虑集中设置的工作不同,我们在一个更加笼统和分散的设置中工作,使我们能够设计和分析更实用和联合的连接设备与网络连接的方法。我们提出了解决这一问题的新算法,并对平滑(强力)convex-(强力)convex-convevey 马鞍点问题进行理论分析。双线问题和有对抗性噪音的神经网络的数值实验证明了拟议方法的有效性。

0
下载
关闭预览

相关内容

在数学中,鞍点或极大极小点是函数图形表面上的一点,其正交方向上的斜率(导数)都为零,但它不是函数的局部极值。鞍点是在某一轴向(峰值之间)有一个相对最小的临界点,在交叉轴上有一个相对最大的临界点。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
45+阅读 · 2020年7月4日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年12月20日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Advances and Open Problems in Federated Learning
Arxiv
17+阅读 · 2019年12月10日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员