Federated Learning (FL) allows multiple participating clients to train machine learning models collaboratively by keeping their datasets local and only exchanging model updates. Existing FL protocol designs have been shown to be vulnerable to attacks that aim to compromise data privacy and/or model robustness. Recently proposed defenses focused on ensuring either privacy or robustness, but not both. In this paper, we develop a framework called PRECAD, which simultaneously achieves differential privacy (DP) and enhances robustness against model poisoning attacks with the help of cryptography. Using secure multi-party computation (MPC) techniques (e.g., secret sharing), noise is added to the model updates by the honest-but-curious server(s) (instead of each client) without revealing clients' inputs, which achieves the benefit of centralized DP in terms of providing a better privacy-utility tradeoff than local DP based solutions. Meanwhile, a crypto-aided secure validation protocol is designed to verify that the contribution of model update from each client is bounded without leaking privacy. We show analytically that the noise added to ensure DP also provides enhanced robustness against malicious model submissions. We experimentally demonstrate that our PRECAD framework achieves higher privacy-utility tradeoff and enhances robustness for the trained models.


翻译:联邦学习(FL) 允许多个参与客户通过保持本地数据集和唯一的交换模式更新来合作培训机器学习模式; 现有FL协议设计显示很容易受到旨在损害数据隐私和/或模型稳健性的攻击; 最近提出的辩护侧重于确保隐私或稳健性,而不是两者兼而有之; 在本文件中,我们开发了一个称为PRECAD的框架,这个框架同时实现不同的隐私(DP),并在加密法的帮助下加强抵御模式中毒袭击的力度; 使用安全的多方计算技术(例如秘密共享), 现有的FL协议设计在模型更新中增加了噪音,而诚实但有保证的服务器(而不是每个客户)没有披露客户的投入,从而在提供比基于本地DP的解决方案更好的隐私使用率交易方面实现了集中化的好处; 同时,我们设计了一个加密的安全验证协议,以核实每个客户的模型更新的贡献没有泄露隐私。 我们从分析中显示,增加噪音以确保DP的更高性也提供了抵御恶意隐私权的强化模型。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
0+阅读 · 2021年12月17日
Privacy-Preserving News Recommendation Model Learning
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员