We propose \texttt{FedGLOMO}, a novel federated learning (FL) algorithm with an iteration complexity of $\mathcal{O}(\epsilon^{-1.5})$ to converge to an $\epsilon$-stationary point (i.e., $\mathbb{E}[\|\nabla f(\bm{x})\|^2] \leq \epsilon$) for smooth non-convex functions -- under arbitrary client heterogeneity and compressed communication -- compared to the $\mathcal{O}(\epsilon^{-2})$ complexity of most prior works. Our key algorithmic idea that enables achieving this improved complexity is based on the observation that the convergence in FL is hampered by two sources of high variance: (i) the global server aggregation step with multiple local updates, exacerbated by client heterogeneity, and (ii) the noise of the local client-level stochastic gradients. By modeling the server aggregation step as a generalized gradient-type update, we propose a variance-reducing momentum-based global update at the server, which when applied in conjunction with variance-reduced local updates at the clients, enables \texttt{FedGLOMO} to enjoy an improved convergence rate. Moreover, we derive our results under a novel and more realistic client-heterogeneity assumption which we verify empirically -- unlike prior assumptions that are hard to verify. Our experiments illustrate the intrinsic variance reduction effect of \texttt{FedGLOMO}, which implicitly suppresses client-drift in heterogeneous data distribution settings and promotes communication efficiency.


翻译:我们提出\ textt{ FedGLOMO}, 一种全新的联结学习算法, 其迭代复杂性为$\ mathcal{O} (\\ epsilon}-1.5}) 美元, 以汇集到$\ epsilon$- 固定点( 即$\ mathbb{ E} [\\ nabla f( bm{x}) 2,\leq\ \ epsilon$), 用于平滑的非 conx 功能 -- -- 在任意客户的内分流异质和压缩的通信( F) -- 与大多数先前工程的超常相异性( \ mathalicalsal_ O} (\\\ epsilon) 比较复杂。 我们实现这一复杂度的关键算法概念的理念是基于这样的观察, 即FL的趋同性会受到两个高差异源的阻碍:(i) 全球服务器汇总步骤, 客户端的更新, 由客户端偏差性更新, 以及(ii) (ii) 本地客户端的递增的客户端的客户端变异化变换数据。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
86+阅读 · 2019年12月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员