This study examines a resource-sharing problem involving multiple parties that agree to use a set of capacities together. We start with modeling the whole problem as a mathematical program, where all parties are required to exchange information to obtain the optimal objective function value. This information bears private data from each party in terms of coefficients used in the mathematical program. Moreover, the parties also consider the individual optimal solutions as private. In this setting, the concern for the parties is the privacy of their data and their optimal allocations. We propose a two-step approach to meet the privacy requirements of the parties. In the first step, we obtain a reformulated model that is amenable to a decomposition scheme. Although this scheme eliminates almost all data exchange, it does not provide a formal privacy guarantee. In the second step, we provide this guarantee with a differentially private algorithm at the expense of deviating slightly from the optimality. We provide bounds on this deviation and discuss the consequences of these theoretical results. The study ends with a simulation study on a planning problem that demonstrates an application of the proposed approach. Our work provides a new optimization model and a solution approach for optimal allocation of a set of shared resources among multiple parties who expect privacy of their data. The proposed approach is based on the decomposition of the shared resources and the randomization of the optimization iterations. With our analysis, we show that the resulting randomized algorithm does give a guarantee for the privacy of each party's data. As we work with a general optimization model, our analysis and discussion can be used in different application areas including production planning, logistics, and network revenue management.


翻译:这项研究考察了涉及多个同意使用一组能力的各方的资源共享问题。 我们首先将整个问题作为一个数学程序进行模型化,要求所有各方交流信息,以获得最佳客观功能值。 这些信息包含来自各方的私人数据, 以数学程序使用的系数计算。 此外, 各方还将个人的最佳解决方案视为私人解决方案。 在这一背景下, 各方的关切是其数据的隐私和最佳分配。 我们建议采取两步方法, 以满足各方的隐私要求。 在第一步, 我们获得一个适合分解办法的重订模型。 虽然该计划几乎消除了所有数据交换,但并不提供正式的隐私保证。 第二步, 我们以差异性私人算法提供这一保证, 以略微偏离最佳性为代价。 我们对这种偏差进行约束, 并讨论这些理论结果的后果。 研究的结尾是对规划问题的模拟研究, 展示了拟议方法的应用。 我们的工作为优化模式和解决方案提供了一种适合拆分方法的模型。 尽管这一方法几乎消除了所有数据交换,但并不提供正式的隐私保证。 第二步, 我们为每个共享的流程的各方提供了一种我们使用的保密性分析, 并且用一个随机的逻辑分析, 我们用了一个基于数据分析。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月17日
Arxiv
10+阅读 · 2021年11月3日
Privacy-Preserving News Recommendation Model Learning
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员