项目名称: 描述玻色爱因斯坦凝聚现象的偏微分方程模型的数学理论研究
项目编号: No.11201415
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 陈淑红
作者单位: 闽南师范大学
项目金额: 23万元
中文摘要: 本项目致力于对描述玻色-爱因斯坦凝聚现象的偏微分方程及金兹堡-朗道方程与薛定谔方程耦合的方程组的数学理论研究。由于研究金兹堡-朗道方程原有的方法对本项目所要研究的方程组失去效力。因此,本项目将主要利用非线性分析、能量估计等方法,并探讨新的方法研究上述方程组解的适定性和正则性等问题。首先,根据方程组本身的特性,利用非线性分析的思想和技巧以及各种插值估计,研究上述偏微分方程组解的适定性。其次,借鉴小初值问题的研究思想和技巧,考虑该方程组的初值问题。最后,探讨新的方法并借鉴研究非线性抛物方程的思想、方法和技巧,结合正则性理论的研究思想,讨论该非线性方程组解的正则性和在有限时间内的爆破等性质。在方法论上力求与相关学科的主流方向相呼应,创立独具特色的普遍方法和一般理论,对丰富和发展非线性偏微分方程的理论具有十分重要的意义。
中文关键词: 玻色爱因斯坦凝聚;偏微分方程模型;金兹堡朗道理论;适定性;正则性
英文摘要: This project is aim to the mathematical theory research on the partial differential equations of describing the Bose-Einstein condensed phenomenon and the coupling systems of Ginzburg-Landau equation and Schrodinger eqution. And the exstienced method of studing Ginzburg-Landau equation is invalid to the systems of our project. Therefore, in this subject, we will be mainly using the method of nonlinear analysis, the method of energy and so on, and explore some new methods to consider the well-posedness and regularity theories of the above system. First of all, according to the characteristics of the above system itself, using the though and the technique of nonlinear analysis, combining with different interpolative estimations, we can consider the well- posedness theory of the solution of above nonlinear partial differential equations. Secondly, from the research ideas and skills of initial value problem with small data, we can establish the solutions theory of above initial value problems with small data. Finally, by exploring some new methods, and referencing and improving the studying ideas and skills and methods of nonlinear parabolic equations, combined with the research technique of regularity theory, we will discuss the theory of regularity and the properties of blow up in limited time and so on. In the me
英文关键词: Bose Einstein condensation phenomena;partial differential equation model;Ginzburg-Landau theory;well-posedness;regularity theory