项目名称: 流体力学中两类非线性偏微分方程的定性研究

项目编号: No.10971135

项目类型: 面上项目

立项/批准年度: 2010

项目学科: 数理科学和化学

项目作者: 李亚纯

作者单位: 上海交通大学

项目金额: 27万元

中文摘要: 流体力学中有无数有趣而且有意义的非线性偏微分方程的问题值得研究和探讨,本项目主要研究两个重要的例子,其一是在天体物理、等离子物理、核物理等广泛的领域中都有用武之地相对论流体力学Euler方程组,其二是在多孔介质的两相流、沉降-固化过程等问题的研究中有重要应用的退化扩散-对流方程(数学上是二阶非线性退化抛物-双曲方程) 然而, 这两种非经典的偏微分方程(组)的数学理论的研究还存在着艰巨的困难,有待成熟. 为此, 我们有必要发展新的思想, 技巧和方法,深入地研究其数学结构和特性,为推动其数学理论的基础和应用研究做出一些贡献. 本项目的主要研究内容有适定性理论(包括解的存在性、唯一性、稳定性等)以及各种数值格式的收敛性和误差估计。

中文关键词: 相对论Euler方程组;退化抛物-双曲方程;熵解;适定性;

英文摘要:

英文关键词: relativistic Euler equations;degenerate parabolic-hyperboli;entropy solutions;well-posedness;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
13+阅读 · 2021年10月9日
【干货书】计算机科学家的数学,153页pdf
专知会员服务
171+阅读 · 2021年7月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
135+阅读 · 2021年3月5日
专知会员服务
139+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
最新《生成式对抗网络数学导论》,30页pdf
专知会员服务
78+阅读 · 2020年9月3日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
睡前刷8分钟手机,身体兴奋1小时
量子位
0+阅读 · 2022年3月4日
物理学告诉你,世界的本质原来如此
学术头条
0+阅读 · 2021年11月30日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
入门 | 一文介绍机器学习中基本的数学符号
机器之心
28+阅读 · 2018年4月9日
深度 | 变分自编码器VAE面临的挑战与发展方向
机器之心
16+阅读 · 2018年3月21日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
19+阅读 · 2021年1月14日
小贴士
相关主题
相关VIP内容
专知会员服务
13+阅读 · 2021年10月9日
【干货书】计算机科学家的数学,153页pdf
专知会员服务
171+阅读 · 2021年7月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
135+阅读 · 2021年3月5日
专知会员服务
139+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
最新《生成式对抗网络数学导论》,30页pdf
专知会员服务
78+阅读 · 2020年9月3日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
睡前刷8分钟手机,身体兴奋1小时
量子位
0+阅读 · 2022年3月4日
物理学告诉你,世界的本质原来如此
学术头条
0+阅读 · 2021年11月30日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
入门 | 一文介绍机器学习中基本的数学符号
机器之心
28+阅读 · 2018年4月9日
深度 | 变分自编码器VAE面临的挑战与发展方向
机器之心
16+阅读 · 2018年3月21日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员