We consider Presburger arithmetic extended by the sine function, call this extension sine-Presburger arithmetic ($\sin$-PA), and systematically study decision problems for sets of sentences in $\sin$-PA. In particular, we detail a decision algorithm for existential $\sin$-PA sentences under assumption of Schanuel's conjecture. This procedure reduces decisions to the theory of the ordered additive group of real numbers extended by sine, which is decidable under Schanuel's conjecture. On the other hand, we prove that four alternating quantifier blocks suffice for undecidability of $\sin$-PA sentences. To do so, we explicitly interpret the weak monadic second-order theory of the grid, which is undecidable, in $\sin$-PA.
翻译:我们考虑普雷斯堡算术由正弦函数延展,称其为正弦计算法(presburger count ($sin$-PA))的延伸,并系统地研究对美元-PA中各套判决的决定问题。特别是,我们详细介绍了Shanuel假设的假设下存在 $sin$-PA 判决的决定算法。这个程序将决定降低到由正弦函数延展的定单附加组实际数字的理论范围,该组数在Schhanuel的猜测下是可判分的。另一方面,我们证明四个交替的限定区块足以使美元-PA判决不可判罚。为了做到这一点,我们明确地解释了网格中虚弱的货币二阶理论,这是不可判分的,用美元-PA($-PA)来解释。