项目名称: 基于粘滑原理的球形检测机器人原地转向运动时变滑模控制方法研究

项目编号: No.51205092

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 赵勃

作者单位: 哈尔滨工业大学

项目金额: 25万元

中文摘要: 提出一种基于粘滑原理的球形检测机器人原地转向运动时变滑模控制方法。通过多体动力学理论及动量矩定理相结合的方式建立球形机器人原地转向动力学模型,并采用库伦模型与Stribeck模型相结合的方法建立摩擦力模型对驱动力进行补偿;设计基于粘滑原理的驱动单元轨迹规划函数实现球形机器人原地转向运动能力,并建立基于能耗最低原则的参数优化机制,提高机器人的续航能力;提出一种时变滑模控制方法对机器人进行原地转向运动控制,该方法对不确定扰动具有鲁棒性,能够减小系统初始控制力矩和响应时间。建立基于时间最优原则的优化函数,通过离线方式采用全局寻优算法求解时变滑模控制律的优化问题。预期目标为:建立一种球形机器人原地转向运动控制方法,使球形机器人在不同管道环境中实现角位移可控的原地转向运动,角位移控制精度在1 以内,位置误差控制在3%以内。

中文关键词: 球形机器人;粘滑原理;原地转向运动;时变滑模控制;摩擦力补偿

英文摘要: A time-varying sliding mode control method for turning in place motion of a inspection spherical robot based on stick-slip principle is proposed. The dynamic model of turning in place motion of the spherical robot is constructed by the combination of multi-body dynamics theory and moment of momentum theorem, and the mathematical model of friction is built by the combination of Coulomb model and Stribeck model for the compensation of driving force. The turning in place motion of spherical robot is realized by trajectory planning of the driving unit based on stick-slip principle, and the endurance of the spherical robot is enhanced by a lowest energy consumption optimization mechanism. A time-varying sliding mode control method is proposed for turning in place motion, which features robustness to disturbance and can reduce the initial torque and response time of the system. A offline global optimization algorithm is utilized to optimize the time-varying sliding mode control law based on time optimal mechanism. The target is to find a turning in place motion control method of spherical robot, by which the robot can turn in place in different pipeline environment with controllable angular displacement of which the control accuracy is less than 1 degree and the position error is in 3 percent.

英文关键词: Spherical robot;stick-slip principle;turning in place motion;time-varying sliding mode control;friction compensation

成为VIP会员查看完整内容
0

相关内容

Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
【硬核书】机器人网络分布式控制
专知会员服务
66+阅读 · 2021年7月25日
专知会员服务
23+阅读 · 2021年6月9日
专知会员服务
33+阅读 · 2020年11月26日
【CMU】基于图神经网络的联合检测与多目标跟踪
专知会员服务
54+阅读 · 2020年6月24日
用树莓派控制WS2812圣诞树灯饰
CSDN
0+阅读 · 2021年12月24日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
学习抓取柔性物体
TensorFlow
3+阅读 · 2021年7月5日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Dynamic Optimization Fabrics for Motion Generation
Arxiv
0+阅读 · 2022年5月17日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员