项目名称: 高速并联机器人柔性机电系统建模理论与控制策略研究

项目编号: No.51275353

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 赵新华

作者单位: 天津理工大学

项目金额: 80万元

中文摘要: 并联机器人具有高刚性、高精度、高承重比等诸多优点而得到广泛应用,并联机器人在高速操作时,实现高精度控制必须考虑到机器人的柔性问题。并联机器人作为被控对象,是一个非线性、多输入多输出、强耦合且具有系统不确定性的复杂系统,因此,柔性机电系统建模及其控制策略研究是并联机器人领域中最具挑战性的课题之一。由于并联机器人的控制较为复杂,常规PID 控制效果很不理想,随着控制理论的发展,新的控制方法不断涌现,并联机器人的控制方法也得到了迅速发展。但在实际系统中,考虑到动力学模型的不确定性、摩擦、弹性变形以及其它干扰因素的存在,单纯依靠某种智能控制方法很难满足并联机器人较高的控制精度。因此,寻求一种既能考虑耦联特性和不确定性,又具有自适应和鲁棒稳定性、且易于实现的高精度控制方法就具有重要的现实意义。

中文关键词: 并联机器人;柔性动力学;数值求解方法;非线性控制策略;关节摩擦

英文摘要: The parallel manipulator takes the advantages of high rigidity, high precision, and high bearing structures and be applied to many fields. When it operates at a high speeds, the flexibility issue should be considered if it must meet the high precise control. The parallel robot, as a controlled robot, is a nonlinear, multiple input/output, close coupling and unstable complex system. Therefore, the research of modeling and control methods of the flexible mechatronical system is one of the challenge topics in the parallel robot fields. Considering the fact that the parallel robot control is much more complicated, the normal PID control can not meet the requirements; therefore, the new control methods keep on developing and, especially the control methods of the parallel robot has gained rapid development. But in real system, considering the uncertain of the dynamical system, along with the friction, elastically shaping, and other side effects interfering, it can not meet the high precise control requirements with the conventional intelligent control methods. Therefore, a control method combining with considering coupling and uncertain circumstances, self-adaptive and robust stability, easily-achieved high precise control methodology is needed and has very important and realistic meaning.

英文关键词: parallel manipulator;flexible dynamics;numerical solution method;nonlinear control strategy;joint friction

成为VIP会员查看完整内容
1

相关内容

军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
27+阅读 · 2021年9月17日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
132+阅读 · 2021年2月17日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
34+阅读 · 2020年11月26日
敏捷项目管理:目标驱动看板
InfoQ
0+阅读 · 2022年3月18日
定位理论5大坑,你踩过几个?
人人都是产品经理
1+阅读 · 2022年1月27日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
60+阅读 · 2020年7月12日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【无人机】无人机的自主与智能控制
产业智能官
45+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
10+阅读 · 2020年6月12日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
小贴士
相关主题
相关VIP内容
军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
27+阅读 · 2021年9月17日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
132+阅读 · 2021年2月17日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
34+阅读 · 2020年11月26日
相关资讯
敏捷项目管理:目标驱动看板
InfoQ
0+阅读 · 2022年3月18日
定位理论5大坑,你踩过几个?
人人都是产品经理
1+阅读 · 2022年1月27日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
60+阅读 · 2020年7月12日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【无人机】无人机的自主与智能控制
产业智能官
45+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
微信扫码咨询专知VIP会员