The problem of fitting distances by tree-metrics has received significant attention in the theoretical computer science and machine learning communities alike, due to many applications in natural language processing, phylogeny, cancer genomics and a myriad of problem areas that involve hierarchical clustering. Despite the existence of several provably exact algorithms for tree-metric fitting of data that inherently obeys tree-metric constraints, much less is known about how to best fit tree-metrics for data whose structure moderately (or substantially) differs from a tree. For such noisy data, most available algorithms perform poorly and often produce negative edge weights in representative trees. Furthermore, it is currently not known how to choose the most suitable approximation objective for noisy fitting. Our contributions are as follows. First, we propose a new approach to tree-metric denoising (HyperAid) in hyperbolic spaces which transforms the original data into data that is ``more'' tree-like, when evaluated in terms of Gromov's $\delta$ hyperbolicity. Second, we perform an ablation study involving two choices for the approximation objective, $\ell_p$ norms and the Dasgupta loss. Third, we integrate HyperAid with schemes for enforcing nonnegative edge-weights. As a result, the HyperAid platform outperforms all other existing methods in the literature, including Neighbor Joining (NJ), TreeRep and T-REX, both on synthetic and real-world data. Synthetic data is represented by edge-augmented trees and shortest-distance metrics while the real-world datasets include Zoo, Iris, Glass, Segmentation and SpamBase; on these datasets, the average improvement with respect to NJ is $125.94\%$.
翻译:在理论计算机科学和机器学习界,由于自然语言处理、植物基因学、癌症基因组学的多种应用以及涉及等级分组的众多问题领域,在理论计算机科学和机器学习界都非常关注与树木测量相近的问题。尽管存在数种可辨别精确的算法,用以测量自然符合树测量限制的数据,但对于如何最好地匹配结构与树结构(或明显)大不相同的数据而言,却远不那么清楚。对于如此吵闹的数据,大多数可用的算法表现不好,常常在有代表性的树上产生负边缘重量。此外,目前还不知道如何选择最适合的贴近目标。我们的贡献如下。首先,我们提出了在超偏振动空间进行树测量分解(HyperAid)的新方法,将原始数据转化为“更像树”的数据,用Gromov $\delta$ 表示的高度比值来评价时,我们进行的一项对比研究涉及近近距离目标的两个选择, $\ell_elgereal dreal-deal-deal developal supal lax, lax the firal demotionalal-deal-deal supromodustrational slational smlational slations, lax slations the slationaldaldaldaldaldaldaldaldaldals, ex supaldaldaldalds, ex saldaldaldaldaldaldaldaldald smaldaldaldaldaldaldaldaldaldaldaldaldaldaldalddddds, 和Ds saldaldaldaldaldalds, 和Ddaldaldaldaldaldaldaldaldaldsdaldaldaldaldaldaldaldaldaldaldaldaldddddddddddddddddaldaldddalds, 和Ddaldaldaldddaldaldaldaldaldaldaldaldaldaldald