项目名称: 测量值相关的稀疏信号可重构条件研究

项目编号: No.11271297

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李海洋

作者单位: 西安交通大学

项目金额: 60万元

中文摘要: 稀疏信号重构是压缩感知理论中的核心问题。现有的稀疏信号可重构的条件研究主要是基于测量矩阵的性质(包括矩阵的Spark、相干性和Babel 函数,以及矩阵的k-约束等距常数等),而没有考虑到测量值的作用,因此得到的稀疏信号可重构条件过于保守,过于刚性;现有的重构算法也大多是基于优化1-范数而发展起来的,因而存在数据的大量冗余难以去除、稀疏系数尺度的位置难以区分等不足。所以,建立与测量值相关的稀疏信号可重构的条件和发展新的重构算法具有重要的理论意义和应用价值。本项目拟在研究测量值与测量矩阵组成的增广矩阵的特性以及向量的最小线性表示理论的基础上,对与测量值相关的稀疏信号可重构的本质特征和0-范数优化问题的新重构算法进行深入研究,旨在为稀疏信号重构问题的研究探索出一种新的理论和方法。

中文关键词: 压缩感知;0-范数优化问题;重构算法;稀疏凸优化;测量矩阵的预处理

英文摘要: The core issue in compressive sensing is sparse signal reconstruction. The present research on the reconstructed conditions of sparse signals are mainly based on the properties of the measured matrix, including the spark, mutual-coherence, Babel function and the k-restricted isometry constants of matrix, but it doesn't consider the effects of measured value. As a result, the reconstruction conditions of sparse signals which it got are too conservative and too rigid. Moreover, the present reconstruction algorithms mostly developed from an optimization problem using 1-norm regularization, and hence there exist the quantities of redundant data which is hard omit and the position of the scale coefficient of sparse is difficult to distinguish. Therefore, it is important and meaningful both in theory and application to bulid the reconstruction codtions of sparse sigals which is related to measured value and develop the new reconstruction algorithm. The project aims to do a in-depth study into the essential characteristics of spare signal reconstruction related to measured value and the new reconstruction algorithm for 0-norm optimization problems, based on investigating the characteristics of augmented matrix made up of measured value and measured matrix and the minimum linear representation theory of vector, and e

英文关键词: Compressed Sensing;l0-norm Optimization Problem;Reconstruction Algorithm;Sparse Convex Optimization;Preconditioning of the Measurement Matrices

成为VIP会员查看完整内容
0

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
基于深度学习的视频超分辨率重构进展综述
专知会员服务
17+阅读 · 2022年3月7日
【博士论文】基于深度学习的单目场景深度估计方法研究
【CVPR2021】探索图像超分辨率中的稀疏性以实现高效推理
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
15+阅读 · 2021年4月12日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
77+阅读 · 2020年12月6日
专知会员服务
42+阅读 · 2020年7月29日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
技术动态 | 图对比学习的最新进展
开放知识图谱
0+阅读 · 2022年1月30日
详解立体匹配系列经典SGM: (6) 视差填充
计算机视觉life
15+阅读 · 2020年8月10日
立体匹配技术简介
计算机视觉life
27+阅读 · 2019年4月22日
计算机视觉方向简介 | 基于单目视觉的三维重建算法
计算机视觉life
30+阅读 · 2019年4月9日
一文读懂贝叶斯分类算法(附学习资源)
大数据文摘
12+阅读 · 2017年12月14日
Tensorflow卷积神经网络
全球人工智能
13+阅读 · 2017年10月14日
FCS 论坛 | 孟德宇:误差建模原理
FCS
14+阅读 · 2017年8月17日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月18日
Challenges for Open-domain Targeted Sentiment Analysis
Arxiv
13+阅读 · 2021年10月22日
小贴士
相关VIP内容
基于深度学习的视频超分辨率重构进展综述
专知会员服务
17+阅读 · 2022年3月7日
【博士论文】基于深度学习的单目场景深度估计方法研究
【CVPR2021】探索图像超分辨率中的稀疏性以实现高效推理
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
15+阅读 · 2021年4月12日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
77+阅读 · 2020年12月6日
专知会员服务
42+阅读 · 2020年7月29日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
相关资讯
技术动态 | 图对比学习的最新进展
开放知识图谱
0+阅读 · 2022年1月30日
详解立体匹配系列经典SGM: (6) 视差填充
计算机视觉life
15+阅读 · 2020年8月10日
立体匹配技术简介
计算机视觉life
27+阅读 · 2019年4月22日
计算机视觉方向简介 | 基于单目视觉的三维重建算法
计算机视觉life
30+阅读 · 2019年4月9日
一文读懂贝叶斯分类算法(附学习资源)
大数据文摘
12+阅读 · 2017年12月14日
Tensorflow卷积神经网络
全球人工智能
13+阅读 · 2017年10月14日
FCS 论坛 | 孟德宇:误差建模原理
FCS
14+阅读 · 2017年8月17日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员