自动解剖标记在冠状动脉疾病诊断中起着至关重要的作用。这个问题的主要挑战是在人体解剖学中遗传的巨大的个体变异。现有的方法通常依赖于冠状动脉树的位置信息和拓扑结构的先验知识,当主要分支混淆时,可能会导致性能不佳。基于图神经网络在结构化数据中的广泛应用,本文提出了一种同时考虑位置和CT图像的条件部分剩余图卷积网络(CPR-GCN)。两个主要部分,部分剩余的GCN和条件提取器,包括在CPR-GCN。条件提取器是一个包含3D CNN和LSTM的混合模型,可以提取沿树枝的三维空间图像特征。在技术方面,部分残差GCN以分支的位置特征为条件,以三维空间图像特征为条件,预测各分支的标签。而在数学方面,我们的方法扭转偏微分方程(PDE)到图形建模。我们从诊所收集了511名受试者的数据,并由两名专家使用两阶段注释过程进行注释。根据五倍交叉验证,我们的CPR-GCN的平均召回率为95.8%,平均准确率为95.4%,平均f1为0.955,优于最先进的方法。