项目名称: 发展方程最优控制问题的积分平均非重叠型区域分解方法
项目编号: No.11301300
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 马克颖
作者单位: 山东大学
项目金额: 22万元
中文摘要: 在博士学位论文的理论基础上,本项目拟对三类最基本的发展方程最优控制问题- - 抛物型方程、非稳态对流扩散方程、二阶双曲型方程最优控制问题, 系统地研究探讨一种新型、高效的数值模拟方法- - 基于交界面积分平均的显/隐非重叠型区域分解方法。建立起它们的数值计算格式,分析研究格式的收敛性、稳定性、局部守恒性、误差估计等。做出对比的数值试验,验证理论结果的正确性,研究这些格式的实际计算效果。在此基础上,编制数值模拟软件, 以便推广到最优控制问题数值模拟的生产实际。 本项目具有鲜明的实际应用背景, 研究成果将有较大的理论创新,将有助于丰富偏微分方程最优控制问题数值模拟领域的理论,促进该领域数值模拟技术和工程应用软件的新发展。
中文关键词: 发展方程;最优控制问题;积分平均方法;非重叠型;区域分解方法
英文摘要: Based on the theory of the applicant's doctoral thesis, this project is built up to research on a new and efficient numerical simulation method for optimal control problem governed by evolution equations. These equations include three classical equations: parabolic equation, unsteady convecton diffusion equation, second -order hyperbolic equation. This method is called as integral-mean explicit/implicit nonoverlapping domain decomposition procedures based on the inter-domain boundaries. The numerical scheme of this method will be established and relevant theoretical qualities will be analyzed, such as convergence, stablity and local conservation. Compared numerical experiments will be presented to confirm the theoretical results and show the efficiency of the scheme. Numerical simulation software will be complied in order to conveniently apply and extend this numericl simulation method to practical production in the field of optimal control problem. This project has the distinct background of practical application. There will be more theoretical innovations in the outcomes of this research, which will greatly improve the theory, the technology and the engineering application softwares of numerical simulation in the field of optimal control problem.
英文关键词: Evolution equation;Optimal control problem;Integral-mean method;Non-overlapping;Domain decomposition procedure