项目名称: 多源干扰下柔性喷杆结构的智能自主振动控制研究

项目编号: No.61773335

项目类型: 面上项目

立项/批准年度: 2018

项目学科: 自动化学科

项目作者: 李生权

作者单位: 扬州大学

项目金额: 16万元

中文摘要: 柔性喷杆是超高地隙喷雾机的核心部件,直接影响施药效果,而柔性结构内阻低,被激励的振动难迅速衰减,造成结构疲劳和农作物损伤。项目瞄准影响柔性喷杆稳定性的关键问题——多源干扰引起的振动,探索新型、有效的振动控制理论和应用技术。具体内容:(1)非线性动力学分析和多目标优化:利用多模态振动理论、模态法和有限元法对结构开展动力学分析,并建立系统的机电耦合模型,设计多目标优化准则,基于混沌优化算法对系统进行配置;(2)智能自主振动控制设计:引入实时预估模型、自适应加速度阻尼等技术,设计一套复合自抗扰振动主动控制方案,解决系统参数摄动、模态耦合和溢出、不确定环境激励等多源内外干扰引起的振动问题,由于兼顾反馈和前馈两种作用,有效解决“前馈+反馈”复合方法引起的控制量饱和问题;(3)系统设计及功能验证:利用微处理器、设计低功耗程控和采集电路,集成紧凑、高效的自抗扰复合振动主动控制数字化系统,并进行功能验证。

中文关键词: 自抗扰控制;主动振动控制;压电元件;柔性喷杆结构;系统验证

英文摘要: The flexible spray bar is the core component of ultra-high gap sprayer, which can directly affect the performance of the spraying. The vibration is difficult to be suppressed rapidly due to the low internal resistance of the flexible structure, so it is easy to bring about structural fatigue and crop damages. The project aims at the irregular vibration caused by the multi-source disturbances which severely affect the stability of flexible spray bar structure. And based on a composite anti-disturbance method, a novel, feasible and effective vibration control strategy is researched in this fund declaration. The details include: (1) nonlinear dynamics analysis and multi-objective optimization design: the structural dynamics is analyzed via the mechanical vibration theory, the modal methods and the finite element method, to establish the electromechanical coupling model of the piezoelectric flexible bar structure. Then the system, especially the sensors/actuators, is reasonably arranged by the designed multi-objective optimization criteria and the global chaos optimization algorithm. (2) Intelligent autonomous vibration control design: Introducing the real-time prediction model and the adaptive acceleration damping techniques, a composite active vibration suppression vibration scheme based on the active disturbance rejection controller is proposed to reduce the vibration caused by the multi-source disturbances, such as the perturbation of system parameter, the modal coupling and spillover, the uncertain environmental excitations and so on. This composite anti-disturbance control method takes into account the two actions of feedback channel and feed-forward channel, so it can effectively solve the problem of control saturation caused by the feedback plus feed-forward composite method. (3) The system design and verification: an integrated compact and efficient digital system for the proposed composite active disturbance rejection vibration control strategy is set-up by employing the microprocessor, designing low power data acquisition and programmable circuit. The verification experiments with the piezoelectric flexible bar structure are also carried out in this digital system.

英文关键词: Active disturbance rejection control;Active vibration control;Piezoelectric element;Flexible spray bar structure;System verification

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
清华大学:从单体仿生到群体智能
专知会员服务
70+阅读 · 2022年2月9日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
132+阅读 · 2021年2月17日
自动化学科面临的挑战
专知会员服务
37+阅读 · 2020年12月19日
专知会员服务
34+阅读 · 2020年11月26日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【无人机】无人机的自主与智能控制
产业智能官
47+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
13+阅读 · 2021年10月22日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
清华大学:从单体仿生到群体智能
专知会员服务
70+阅读 · 2022年2月9日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
132+阅读 · 2021年2月17日
自动化学科面临的挑战
专知会员服务
37+阅读 · 2020年12月19日
专知会员服务
34+阅读 · 2020年11月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员