项目名称: 时滞耦合系统分支临界值附近的动力学行为
项目编号: No.11301263
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 李艳秋
作者单位: 南京工业大学
项目金额: 22万元
中文摘要: 时滞耦合系统广泛存在于许多科学领域,具有重要的实际意义。时滞和耦合的存在增加了系统的复杂性,使得系统能够产生更为丰富、更为复杂的动力学行为。 本项目利用泛函微分方程的分支理论来讨论时滞耦合系统的动力学行为,主要以时滞和耦合关系等为参数考察耦合系统的分支行为,包括自治时滞耦合系统的余维1的不动点分支、Hopf分支,余维2的双Hopf分支、Bogdanov-Takens分支、Hopf-zero分支,以及一些余维大于2的分支,力求得到相应分支的普适开折,给出分支临界值附近完整的分支集,详细分析分支带来的复杂动力学行为,进一步在对自治系统的研究基础上,讨论非自治时滞耦合系统的分支行为。最后,利用分支集和数值方法将这些新奇的动力学现象展示出来。 本项目的成功实施不仅可以完善时滞系统的分支理论,而且可以推动时滞耦合系统的实际应用。
中文关键词: 时滞;耦合系统;普适开折;分支;
英文摘要: Time-delay coupled systems widely present in many scientific fields and have valuable significance. The existences of delay and coupling make the system to be complex, so the system can generate more rich and complex dynamic behavior. The bifurcation theory of functional differential equations is utilized to research the dynamics of time-delay coupled systems in the current project. Specifically, the bifurcations of coupled systems are discussed taking the delay and coupling as the parameters. The bifurcations contain codimension-1 fixed point and Hopf, codimension-2 double Hopf, Bogdanov-Takens and Hopf-zero, other bifurcations with codimension more than 2 and so on. The purpose of our project is to obtain the universal unfoldings of the bifurcations above, and give the complete bifurcation sets. Then, the complex dynamics caused by bifurcations can be analyzed, and the bifurcations of non-autonomous delay coupled systems are investigated on the basis of autonomous systems. Finally, numerical methods can show the novel dynamic phenomena in the bifurcation sets. The successful implementation of the project can not only improve the bifurcation theory of delay systems, but also can promote the practical application of time-delay coupled systems.
英文关键词: time delay;coupled system;universal unfolding;bifurcation;