项目名称: 时滞线性系统的边界输出反馈问题研究
项目编号: No.11301412
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 梅占东
作者单位: 西安交通大学
项目金额: 22万元
中文摘要: 偏微分方程控制理论是现代分布参数控制理论研究的热门课题。由于物理和技术上的原因,人们往往将控制器和传感器设置在系统的边界上。时滞的出现可能产生很坏的影响,如破坏系统的稳定性,让控制器的设计和系统分析变得复杂。具有时滞和边界控制的无穷维线性系统的相关性质目前还没有系统的研究。同样,考虑时滞的边界输出反馈控制器的设计问题的文献也很有限。本项目拟采用正则线性系统的扰动理论,研究具有时滞边界输出线性系统的适定性和正则性、以及反馈系统的稳定性问题,得到一些必要和充分性条件,并把所得结论用于解决具有无界出生过程的种群动力系统的适定性和渐近性问题以及考虑怀孕死亡和空间扩散的种群动力系统;在抽象框架下设计出时滞输出反馈控制系统的基于观测器和预估器的同位和非同位控制器,并把所得到的结果用于解决高维波动方程、薛定谔方程等方程的控制器设计问题。
中文关键词: 适定性;正则性;输出反馈;稳定性;
英文摘要: Control theory of partial differential equations is a current topic in the research of the distributed parameter control theory. Because of physics and technology,controllers and sensers are usually placed on the boundary of the systems.It has been recognized that the delay presence could induce bad performance,such as destorying the stability, complicating controller design and system analysis. The properties of infinite-dimensional linear systems with delay and boundary control are not solved up to now. And, the references of the design of controllers of boundary feedback with delay are limited. Using the perturbation theory of regular linear system,the project shall research the well-posedness, regularity of the linear systems with delayed boundary output and the stability of the feedback system. We obtain some necessary and/or sufficient conditions which will be used to solve the well-posedness and asymptotic property of population dynamic with unbounded birth process, population dynamic with death caused by pregnancy and with spatial diffusion. Furthermore, we shall design collocated and noncollocated controller based on observer and predictor. The obtained results are applied to high-dimensional wave equtions and Schrodinger equations etc.
英文关键词: Well-posedness;regularity;output feedback;stability;