项目名称: Frénd相变热力学模型发展方程组整体解及其渐近性态
项目编号: No.11201468
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 江杰
作者单位: 中国科学院武汉物理与数学研究所
项目金额: 22万元
中文摘要: 本项目研究近年来材料科学中提出的Frénd相变热力学模型所对应的非线性发展方程组的整体解适定性及其大时间渐近性态问题,该方程组以热平衡方程含有高阶非线性耦合项为特征。对这类非线性发展方程组,我们深入研究其整体解的存在唯一性以及正则性等重要性质。在此基础上我们利用申请者近期建立的具有一定创新性的分析引理,结合半群、能量方法、平面分析等技巧研究对应的无穷维动力系统的性质,包括整体吸引子的存在性、正则性以及结构等。同时我们还将应用Lojasiewicz-Simon不等式方法来研究Cattaneo热传导下的Frénd方程组其整体解当时间趋于无穷大时是否收敛到某个稳态解,并给出收敛速率的估计等。本项目涉及的课题有着重要的应用背景,有助于偏微分方程理论及方法的发展和创新,具有重要的理论意义和应用价值。
中文关键词: 相场模型;两相流;热力学系统;整体适定性;长时间渐近性态
英文摘要: Our research concerns the global solutions and their asymptotic behaviors of nonlinear evolution equations arising from Frénd thermodynamic models for phase transitions. The PDE system features a heat balance equation with strongly nonlinear terms of high order. Global well-posedness and the regularities of solutions to these nonlinear evolution equations will be studied. Moreover, based on a lemma of analysis originally established by the applicant recently and using skills like semigoup theory , enery method and plane-analysis, we study the associated infinite dynamical systems including existence of global attractors and their regularities or structures. Convergence to equilibrium of global solutions to Frénd model under Cattaneo law will be also investigated using developed Lojasiewicz-Simon approach. The problems of our research proposal have important physical backgrounds and the related research will develops the methods and theories on partial differential equations.
英文关键词: phase field models;two-phase flow;thermodynamical systems;global well-posedness;longtime behavior