项目名称: 奇性抛物方程理论及其在流体力学中的应用
项目编号: No.11271306
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 张剑文
作者单位: 厦门大学
项目金额: 60万元
中文摘要: 来源于应用领域中的许多偏微分方程(组)不仅具有很强的非线性,而且常带有退化性、奇异性或强耦合性,它们一直是应用数学和计算流体力学研究的前沿热点问题。本项目拟从数学理论研究的角度出发,利用近年来逐步完善的非线性偏微分方程理论以及调和分析、几何分析中新的思想方法研究具有奇性的非线性抛物方程和流体力学中的若干问题,其中主要包括: (1)多重非线性抛物方程(组)的Fujita临界指标和解的blowup问题; (2)可压缩Navier-Stokes方程组弱解的部分正则性和奇性分析; (3)Prandtl边界层方程组整体弱解的正则性; (4)具有退化粘性的可压缩N-S方程组解的存在性; (5)向列型可压缩液晶系统整体解的存在唯一性和长时间性质。
中文关键词: Navier-Stokes方程组;MHD方程组;适定性;长时间性质;粘性消失极限
英文摘要: The partial differential equations (PDEs) in many fields of applied sciences are not only nonlinear, but also degenerate, singular and strong coupling. Due to the physical importance and mathematical challenges, these PDEs have been central issues in both applied mathematics and computational mechanics. In this project, we aim to adopt the classical theory and some new techniques, which have been developed in the studies of nonlinear PDEs as well as harmonic analysis and geometric analysis, to study some mathematically important problems arsing from the nonlinear parabolic equations with singularity and fluid mechanics. It mainly consists of the following five parts: (1) Critical Fujita exponent and blowup for some multi-nonlinear parabolic equations; (2) Partial regularity and singularity of weak solutions to the compressible Navier-Stokes equations; (3) Regularity of weak soltuions to the Prandtl boundary layer system; (4) Existence of solutions to the compressible Navier-Stokes equations with degenerate viscosities; (5) Global existence and large-time behavior of solutions for the compressible nematic liquid crystal flows.
英文关键词: Navier-Stokes equations;Magnetohydrodynamics;well-posedness;large-time behavior;vanishing viscosity liimit