项目名称: 考虑关节柔性和执行器动力学的机器人操作臂非干涉型智能控制研究

项目编号: No.61473102

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 金弘哲

作者单位: 哈尔滨工业大学

项目金额: 80万元

中文摘要: 在机器人操作臂控制领域中,传统的智能控制策略,如自适应控制、模糊神经网络控制等,由于其复杂的算法结构和大负荷运算量,对控制体系结构建立和处理器实时性提出了很高的要求。另外一方面,在高加速或重载荷工作条件下,关节柔性和执行器动力学是不可忽略的因素,由此引发的扰动直接影响控制性能。这表明,以传统刚体动力学为基础的机器人控制器设计思想受使用条件的制约。当下的研究正逐渐地朝着以机器人操作臂详细建模和人机和谐共存为基础的智能化控制过渡,而协调系统固有复杂度与控制算法在工程中的简易度要求之间的矛盾是核心,也是实际应用的关键。本项目拟开展以下研究:关节系统刚度、摩擦阻尼、间隙等系统参数辨识方法研究;由本体动力学、关节弹性力学、执行器机电动力学高度耦合组成的非线性欠驱动机器人操作臂系统的动态解耦策略研究;简易实用型智能控制算法研究;非干涉型机器人操作臂控制器设计方法研究;机器人操作臂智能随动控制方法研究。

中文关键词: 机器人操作臂;机器人操作臂非干涉型智能运动控制;动态解耦;虚拟输入;逆映射;关节柔性和执行器动力学;机器人操作臂非干涉型智能随动控制

英文摘要: In the field of robot manipulator control, the traditional intelligent control strategies, such as adaptive control, fuzzy neural network control and control based on genetic algorithm, has put forward high requirement for the building of control architecture and processor's real-time performance, due to their complex algorithm structure and heavy load of computation.On the other hand, in high acceleration/deceleration control mode, the factors such as joint flexibility, actuator dynamics are not negligible disturbance and will have a direct impact on the performance of the controller. This shows that the robot controller design method based on rigid body dynamics is restrained by the operating conditions. Now researchers are gradually moving towards intelligent control method based on integrated modeling of robotic manipulators (considering the joint flexibility and actuator dynamics). While how to deal with the contradiction between the inherent complexity of coordinate system and simplicity of control algorithm is of great importance. Meanwhile it's crucial in practical industrial applications. This project intends to open up the following research directions: system parameter identification method and experimental research of joint system stiffness, friction damping and clearance; decoupling strategy research of under-actuated robotic manipulators with highly coupled motion of body, jonit and actuator; research and development of non-interference intelligent control algorithm; research of non-interferential independent joint controller design methods; research of non-interference intelligent follow-up contontrol method for robot manipulators.

英文关键词: Robot manipulator;Non-interference intelligent motion control of robot manipulator;Dynamic decoupling; virtual input; and and inverse map;Joint flexibility and actuator dynamics;Non-inteference intelligent follow-up control of robot manipulator

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
33+阅读 · 2022年1月31日
智能无人集群系统发展白皮书
专知会员服务
295+阅读 · 2021年12月20日
专知会员服务
32+阅读 · 2021年9月14日
【硬核书】机器人网络分布式控制
专知会员服务
67+阅读 · 2021年7月25日
机器人运动轨迹的模仿学习综述
专知会员服务
44+阅读 · 2021年6月8日
专知会员服务
34+阅读 · 2020年11月26日
人机对抗智能技术
专知会员服务
201+阅读 · 2020年5月3日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
【无人机】无人机的自主与智能控制
产业智能官
47+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月1日
小贴士
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
33+阅读 · 2022年1月31日
智能无人集群系统发展白皮书
专知会员服务
295+阅读 · 2021年12月20日
专知会员服务
32+阅读 · 2021年9月14日
【硬核书】机器人网络分布式控制
专知会员服务
67+阅读 · 2021年7月25日
机器人运动轨迹的模仿学习综述
专知会员服务
44+阅读 · 2021年6月8日
专知会员服务
34+阅读 · 2020年11月26日
人机对抗智能技术
专知会员服务
201+阅读 · 2020年5月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员